

DC/DC CONVERTER 2W, SIP-Package

FEATURES

- Industry Standard SIP-8 Package
- Wide 2 : 1 Input Voltage Range
- Fully Regulated Output Voltage
- I/O Isolation 1000 VDC
- ► Operating Ambient Temp. Range -40°C to +85°C
- Short Circuit Protection
- Remote On/Off Control
- UL/cUL/IEC/EN 60950-1 Safety Approval

PRODUCT OVERVIEW

The MINMAX MCW1000 series is a range of isolated 2W DC/DC converter modules featuring fully regulated output and wide 2:1 input voltage ranges. The product comes in a SIP-8 package with a very small footprint occupying only 2.0 cm² (0.3 square in.) on the PCB.

An excellent efficiency allows an operating temperature range of -40°C to +85°C. Further features include remote On/Off control and over load protection. The very compact dimensions of these DC/DC converters make them an ideal solution for many space critical applications in battery-powered equipment and instrumentation.

Model Selection Guide

Model	Input	Output	Output	Current	Input Current		Reflected	Max. capacitive	Efficiency
Number	Voltage	Voltage					Ripple	Load	(typ.)
	(Range)		Max.	Min.	@Max. Load	@No Load	Current		@Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	mA(typ.)	μF	%
MCW1011	5	3.3	500	125	471	40	400	2200	70
MCW1012	(4.5~9)	5	400	100	548			1000	73
MCW1013	(4.5 * 3)	12	167	42	534			170	75
MCW1021	12 (9 ~ 18)	3.3	500	125	184	20	300	2200	73
MCW1022		5	400	100	217			1000	77
MCW1023	(97-10)	12	167	42	209			170	80
MCW1031	24	3.3	500	125	96			2200	72
MCW1032	(18 ~ 36)	5	400	100	109	10	200	1000	77
MCW1033	(10~30)	12	167	42	103			170	81
MCW1041	40	3.3	500	125	49			2200	71
MCW1042	48 (36 ~ 75)	5	400	100	57	8	500	1000	73
MCW1043	(30~75)	12	167	42	53			170	79

Input Specifications

input Specifications			1			
Parameter	Model	Min.	Тур.	Max.	Unit	
	5V Input Models	-0.7		15		
	12V Input Models	-0.7		25		
Input Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50		
	48V Input Models	-0.7		100		
	5V Input Models	3.5	4	4.5		
Chart Lin Threehold) (altern	12V Input Models	4.5	7	9	VDC	
Start-Up Threshold Voltage	24V Input Models	8	12	18		
	48V Input Models	16	24	36		
	5V Input Models		3.5	4		
Linder Valterer Chutdaum	12V Input Models		6.5	8.5		
Under Voltage Shutdown	24V Input Models		11	17		
	48V Input Models		22	34		
Short Circuit Input Power	All Models			1500	mW	
Input Filter	An Models		Internal C	ernal Capacitor		

MCW1000 SERIES

DC/DC CONVERTER 2W, SIP-Package

Remote On/Off Control

Parameter	Conditions	Min.	Тур.	Max.	Unit		
Converter On	Under 0.6 VDC or Open Circuit, drops down to 0VDC by 2mV/°C						
Converter Off	2.7 to 15 VDC						
Standby Input Current			0.1	0.2	mA		
Control Input Current (on)	Vin = 0V			-0.4	mA		
Control Input Current (off)	Vin = 5.0V			1	mA		
Control Common	Referen	iced to Negative	Input				

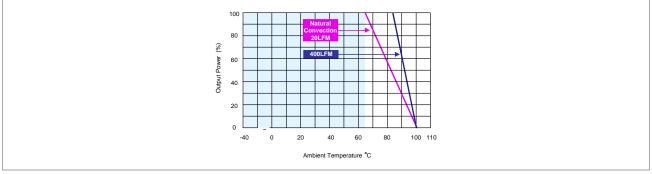
Output Specifications

e alpar epeemente					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy				±2.0	%Vnom.
Line Regulation	Vin=Min. to Max.@Full Load		±0.3	±0.5	%
Load Regulation	lo=25% to 100%		±0.5	±0.75	%
Ripple & Noise	0-20MHz Bandwidth		30	50	mV _{P-P}
Transient Recovery Time	250/ Lood Char Charge		100	300	µsec
Transient Response Deviation	25% Load Step Change		±3	±5	%
Temperature Coefficient			±0.01	±0.02	%/°C
Short Circuit Protection	Continu	ious, Automatic R	ecovery		

General Specifications

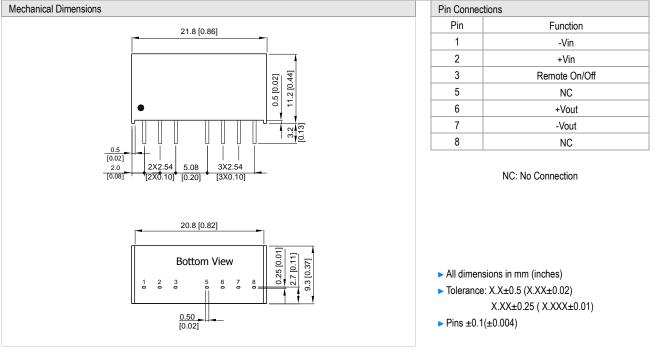
Parameter	Conditions	Min.	Тур.	Max.	Unit
VO logistics Voltage	60 Seconds	1000			VDC
I/O Isolation Voltage	1 Second	1200			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100KHz, 1V		65	120	pF
Switching Frequency		100	300	650	KHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	1,000,000			Hours
Safety Approvals	UL/cUL 60950-1 recognition (CSA certificate),	IEC/EN 60950-1	(CB-report)	

Environmental Specifications


Linvironmental opecifications				
Parameter	Conditions	Min.	Max.	Unit
Operating Ambient Temperature Range (See Power Derating Curve)	Natural Convection	-40	+85	°C
Case Temperature			+90	C°
Storage Temperature Range		-55	+105	C°
Humidity (non condensing)			95	% rel. H
Cooling	Ν	atural Convection		
Lead Temperature (1.5mm from case for 10Sec.)			260	C°

MCW1000 SERIES

DC/DC CONVERTER 2W, SIP-Package


Power Derating Curve

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however, they may not meet all specifications listed.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact factory.
- 6 That "natural convection" is about 20LFM but is not equal to still air (0 LFM).
- 7 Specifications are subject to change without notice.

Package Specifications

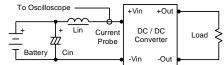
Physical Characteristics

Case Size	: 21.8x9.3x11.2 mm (0.86x0.37x0.44 inches)
Case Material	: Non-Conductive Black Plastic (flammability to UL 94V-0 rated)
Pin Material	: Alloy 42
Weight	: 4.8g

E-mail:sales@minmax.com.tw Tel:886-6-2923150

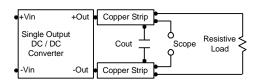
www.minmax.com.tw

MCW1000 SERIES


DC/DC CONVERTER 2W, SIP-Package

Test Setup

Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin (4.7µH) and Cin (220µF, ESR < 1.0Ω at 100 KHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance.

Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.

Peak-to-Peak Output Noise Measurement Test

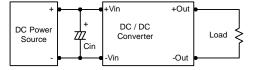
Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

Technical Notes

Remote On/Off

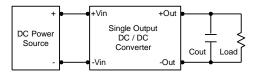
Negative logic remote on/off turns the module off during a logic high voltage on the remote on/off pin, and on during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic high is 2.7V to 15V. A logic low is under 0.6 VDC or open circuit, drops down to 0VDC by 2mV/°C. The maximum sink current at on/off terminal during a logic low is 1 mA. The maximum allowable leakage current of the switch at on/off terminal= (under 0.6VDC or open circuit) is 0.4mA.

Maximum Capacitive Load

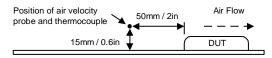

The MCW1000 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Overload Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is commended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a 8.2μ F for the 5V input device, a 3.3μ F for the 12V input devices and a 1.5μ F for the 24V and 48V devices.


Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C. The derating curves are determined from measurements obtained in a test setup.

18, Sin Sin Road, An-Ping Industrial District, Tainan 702, Taiwan Tel: 886-6-2923150 Fax: 886-6-2923149 E-mail: sales@minmax.com.tw Minmax Technology Co., Ltd. 2015/08/31 REV:8 Page 4 of 4