

FEATURES

- ► Smallest Encapsulated 6W Converter
- ► Industrial Standard DIP-16 Package
- ► Ultra-wide 4:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► I/O Isolation 1500 VDC
- ▶ Operating Temp. Range -40°C to +90°C
- ► Low No Load Power Consumption
- No Min. Load Requirement
- ► Overload Load and Short Circuit Protection
- ► Shielded Metal Case with Insulated Baseplate
- ▶ Designed-in Conducted EMI meets EN55032/22 Class A & FCC Level A
- ► UL/cUL/IEC/EN 62368-1 (60950-1) Safety Approval & CE Marking

PRODUCT OVERVIEW

The MINMAX MDWI06 series is the latest generation of high performance dc-dc converter modules setting a new standard concerning power density. The product offers a full 6W isolated dc-dc converter within an encapsulated DIP-16 package which occupies only 0.5 in² of PCB space. There are 14 models available for 24, 48VDC with wide 4:1 input voltage range. Further features include over current, short circuit protection and no min. load requirement as well. An high efficiency allows operating temperatures range of -40°C to +90°C.

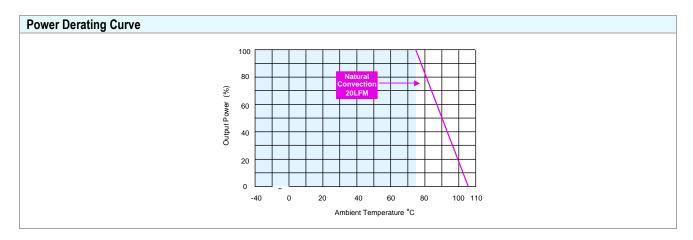
These DC/DC converters offer an economical solution for many cost critical applications in battery-powered equipment, instrumentation, distributed power architectures in communication, industrial electronics, energy facilities and many other critical applications where PCB space is limited.

Model	Input	Output	Output	Input Current		Max. capacitive Load	Efficiency		
Number	Voltage	Voltage	Current				(typ.)		
	(Range)		Max.	@Max. Load	@No Load		@Max. Load		
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%		
MDWI06-24S033		3.3	3 1500 264			680	78		
MDWI06-24S05		5	1200	305	8	680	82		
MDWI06-24S12	0.4	12	500	291		330	86		
MDWI06-24S15	24 (9 ~ 36)	15	400	291		330	86		
MDWI06-24S24		24	250	287		150	87		
MDWI06-24D12		±12	±250	291		150#	86		
MDWI06-24D15		±15	±200	287			150#	87	
MDWI06-48S033		3.3	1500	132				680	78
MDWI06-48S05		5	1200	152		680	82		
MDWI06-48S12	48 (18 ~ 75)	12	500	145	6	330	86		
MDWI06-48S15		15	400	145		330	86		
MDWI06-48\$24		24	250	144		150	87		
MDWI06-48D12		±12	±250	144		150#	87		
MDWI06-48D15		±15	±200	144		150#	87		

For each output

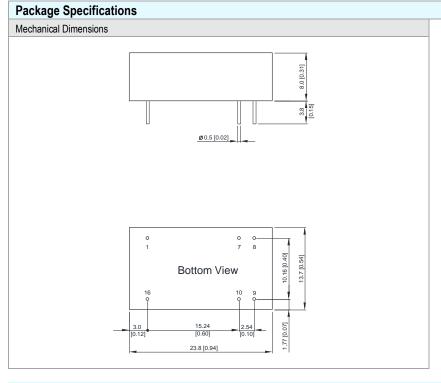
Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
Level Owner Wellers (A en en en ex)	24V Input Models	-0.7		50	
Input Surge Voltage (1 sec. max.)	48V Input Models	-0.7		100	
Chart I la Tharabald Valtana	24V Input Models			9	VDC
Start-Up Threshold Voltage	48V Input Models			18	VDC
Llades Veltage Chutdous	24V Input Models		8		
Under Voltage Shutdown	48V Input Models		16		
Input Filter	All Models	Internal Pi Type			

Output Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy				±2.0	%Vnom.
Output Voltage Balance	Dual Output, Balanced Loads		±1.0	±2.0	%
Line Regulation	Vin=Min. to Max. @Full Load		±0.2	±0.8	%
Load Regulation	Io=0% to 100%		±0.5	±1.0	%
Minimum Load	No minimum Load Requirement				
Ripple & Noise	0-20 MHz Bandwidth			55	mV _{P-P}
Transient Recovery Time	050/ Lead 01-2 01-2-2			500	μsec
Transient Response Deviation	25% Load Step Change		±3	±5	%
Temperature Coefficient			±0.01	±0.02	%/°C
Over Load Protection	Hiccup		150		%
Short Circuit Protection	Hiccup Mode 0.5 Hz typ., Automatic Recovery				


General Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
I/O la alatia a Malta sa	60 Seconds	1500			VDC	
I/O Isolation Voltage	1 Second	1800			VDC	
I/O Isolation Resistance	500 VDC	1000			MΩ	
I/O Isolation Capacitance	100KHz, 1V		500		pF	
Switching Frequency			370		KHz	
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	2,951,470			Hours	
O-fate Assessed	UL/cUL 60950-1 recognition (UL certificate), IEC/EN 60950-1(CB-report)					
Safety Approvals	UL/cUL 62368-1 recognition (UL certificate), IEC/EN 62368-1(CB-report)					

Environmental Specifications						
Parameter	Conditions	Min.	Max.	Unit		
Operating Ambient Temperature Range (See Power Derating Curve)	Natural Convection	-40	+90	℃		
Case Temperature			+105	°C		
Storage Temperature Range		-50	+125	°C		
Humidity (non condensing)			95	% rel. H		
Cooling	Natural Convection					
Lead Temperature (1.5mm from case for 10Sec.)			260	°C		

EMC Specifications					
Parameter		Standards & Level			
EMI	Conduction	Conduction EN55032, EN55022, FCC part 15			
	EN55024				
	ESD	EN61000-4-2 Air ± 8kV , Contact ± 6kV	Α		
	Radiated immunity	EN61000-4-3 10V/m	Α		
EMS	Fast transient (5)	EN61000-4-4 ±2kV	Α		
	Surge (5)	EN61000-4-5 ±1kV	Α		
	Conducted immunity	EN61000-4-6 10Vrms	Α		
	PFMF	EN61000-4-8 100A/m, 1000A/m(1sec.)	Α		


E-mail:sales@minmax.com.tw Tel:886-6-2923150

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact factory.
- 5 To meet EN61000-4-4 & EN61000-4-5 an external capacitor across the input pins is required. Suggested capacitor: 220μF/100V.
- 6 That "natural convection" is about 20LFM but is not equal to still air (0 LFM).
- 7 Specifications are subject to change without notice.

Pin Connections					
Pin	Single Output	Dual Output			
1	-Vin	-Vin			
7	NC	NC			
8	NC	Common			
9	+Vout	+Vout			
10	-Vout	-Vout			
16	+Vin	+Vin			

NC: No Connection

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02)

X.XX±0.25 (X.XXX±0.01)

▶ Pin diameter Ø 0.5 ±0.05 (0.02±0.002)

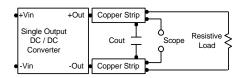
Physical Characteristics

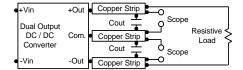
Case Size : 23.8x13.7x8.0 mm (0.94x0.54x0.31 inches)

Case Material : Aluminium Alloy, Black Anodized Coating

Pin Material : Tinned Copper

Weight : 6.1g

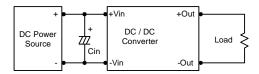

E-mail:sales@minmax.com.tw Tel:886-6-2923150



Test Setup

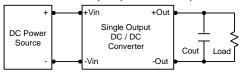
Peak-to-Peak Output Noise Measurement Test

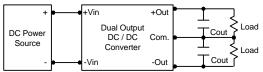
Use a Cout $0.47 \mu F$ ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.


Technical Notes

Overload Protection

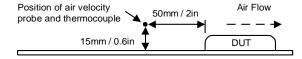
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a $2.2\mu\text{F}$ for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3μ F capacitors at the output.


Maximum Capacitive Load

The MDWI06 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C.

The derating curves are determined from measurements obtained in a test setup.

